Technical Info South Africa

Plastic Material Classifications

Plastic Materials Classification

Plastics Classification

Plastics are usually classified by their chemical structure of the polymer's backbone and side chains. Plastics can also be classified by the chemical process used in their synthesis, such as condensation, polyaddition, and cross-linking.


About Polyurethanes


Thermoplastics and thermosetting polymers

There are two types of plastics: thermoplastics and thermosetting polymers. Thermoplastics are the plastics that do not undergo chemical change in their composition when heated and can be molded again and again. Examples include polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polytetrafluoroethylene (PTFE). Common thermoplastics range from 20,000 to 500,000 amu, while thermosets are assumed to have infinite molecular weight. These chains are made up of many repeating molecular units, known as repeat units, derived from monomers; each polymer chain will have several thousand repeating units. Thermosets can melt and take shape once; after they have solidified, they stay solid. In the thermosetting process, a chemical reaction occurs that is irreversible. The vulcanization of rubber is a thermosetting process. Before heating with sulfur, the polyisoprene is a tacky, slightly runny material, but after vulcanization the product is rigid and non-tacky. Other classifications are based on qualities that are relevant for manufacturing or product design. Examples of such classes are the thermoplastic and thermoset, elastomer, structural, biodegradable, and electrically conductive. Plastics can also be classified by various physical properties, such as density, tensile strength, glass transition temperature, and resistance to various chemical products.


Polyethylene (abbreviated PE) or polythene (IUPAC name polyethene or poly(methylene)) is the most common plastic. The annual production is approximately 80 million metric tons. Its primary use is within packaging (plastic bags, plastic films, geomembranes, containers including bottles, etc.). Many kinds of polyethylene are known, but they almost always have the chemical formula (C2H4)nH2. Thus PE is usually a mixture of similar organic compound that differ in terms of the value of n.

Polyethylene is classified into several different categories based mostly on its density and branching. Its mechanical properties depend significantly on variables such as the extent and type of branching, the crystal structure and the molecular weight. With regard to sold volumes, the most important polyethylene grades are HDPE, LLDPE and LDPE.

Ultra-high-molecular-weight polyethylene (UHMWPE)

UHMWPE is polyethylene with a molecular weight numbering in the millions, usually between 3.1 and 5.67 million. The high molecular weight makes it a very tough material, but results in less efficient packing of the chains into the crystal structure as evidenced by densities of less than high density polyethylene (for example, 0.930–0.935 g/cm3). UHMWPE can be made through any catalyst technology, although Ziegler catalysts are most common. Because of its outstanding toughness and its cut, wear and excellent chemical resistance, UHMWPE is used in a diverse range of applications. These include can and bottle handling machine parts, moving parts on weaving machines, bearings, gears, artificial joints, edge protection on ice rinks and butchers' chopping boards. It competes with aramid in bulletproof vests, under the tradenames Spectra and Dyneema, and is commonly used for the construction of articular portions of implants used for hip and knee replacements.

High-density polyethylene (HDPE)

HDPE is defined by a density of greater or equal to 0.941 g/cm3. HDPE has a low degree of branching and thus stronger intermolecular forces and tensile strength. HDPE can be produced by chromium/silica catalysts, Ziegler-Natta catalysts or metallocene catalysts. The lack of branching is ensured by an appropriate choice of catalyst (for example, chromium catalysts or Ziegler-Natta catalysts) and reaction conditions. HDPE is used in products and packaging such as milk jugs, detergent bottles, margarine tubs, garbage containers and water pipes. One third of all toys are manufactured from HDPE. In 2007 the global HDPE consumption reached a volume of more than 30 million tons.

Cross-linked polyethylene (PEX or XLPE)

PEX is a medium- to high-density polyethylene containing cross-link bonds introduced into the polymer structure, changing the thermoplast into an elastomer. The high-temperature properties of the polymer are improved, its flow is reduced and its chemical resistance is enhanced. PEX is used in some potable-water plumbing systems because tubes made of the material can be expanded to fit over a metal nipple and it will slowly return to its original shape, forming a permanent, water-tight, connection.

Medium-density polyethylene (MDPE)

MDPE is defined by a density range of 0.926–0.940 g/cm3. MDPE can be produced by chromium/silica catalysts, Ziegler-Natta catalysts or metallocene catalysts. MDPE has good shock and drop resistance properties. It also is less notch sensitive than HDPE, stress cracking resistance is better than HDPE. MDPE is typically used in gas pipes and fittings, sacks, shrink film, packaging film, carrier bags and screw closures.

Linear low-density polyethylene (LLDPE)

LLDPE is defined by a density range of 0.915–0.925 g/cm3. LLDPE is a substantially linear polymer with significant numbers of short branches, commonly made by copolymerization of ethylene with short-chain alpha-olefins (for example, 1-butene, 1-hexene and 1-octene). LLDPE has higher tensile strength than LDPE, it exhibits higher impact and puncture resistance than LDPE. Lower thickness (gauge) films can be blown, compared with LDPE, with better environmental stress cracking resistance but is not as easy to process. LLDPE is used in packaging, particularly film for bags and sheets. Lower thickness may be used compared to LDPE. Cable covering, toys, lids, buckets, containers and pipe. While other applications are available, LLDPE is used predominantly in film applications due to its toughness, flexibility and relative transparency. Product examples range from agricultural films, saran wrap, and bubble wrap, to multilayer and composite films. In 2009 the world LLDPE market reached a volume of almost US$24 billion (€17 billion).

Low-density polyethylene (LDPE)

LDPE is defined by a density range of 0.910–0.940 g/cm3. LDPE has a high degree of short and long chain branching, which means that the chains do not pack into the crystal structure as well. It has, therefore, less strong intermolecular forces as the instantaneous-dipole induced-dipole attraction is less. This results in a lower tensile strength and increased ducility. LDPE is created by free radical polymerization. The high degree of branching with long chains gives molten LDPE unique and desirable flow properties. LDPE is used for both rigid containers and plastic film applications such as plastic bags and film wrap. In 2009 the global LDPE market had a volume of circa US$22.2 billion (€15.9 billion).

Very-low-density polyethylene (VLDPE)

VLDPE is defined by a density range of 0.880–0.915 g/cm3. VLDPE is a substantially linear polymer with high levels of short-chain branches, commonly made by copolymerization of ethylene with short-chain alpha-olefins (for example, 1-butene, 1-hexene and 1-octene). VLDPE is most commonly produced using metallocene catalysts due to the greater co-monomer incorporation exhibited by these catalysts. VLDPEs are used for hose and tubing, ice and frozen food bags, food packaging and stretch wrap as well as impact modifiers when blended with other polymers.

Recently much research activity has focused on the nature and distribution of long chain branches in polyethylene. In HDPE a relatively small number of these branches, perhaps 1 in 100 or 1,000 branches per backbone carbon, can significantly affect the rheological properties of the polymer.


In addition to copolymerization with alpha-olefins, ethylene can also be copolymerized with a wide range of other monomers and ionic composition that creates ionized free radicals. Common examples include vinyl acetate (the resulting product is ethylene-vinyl acetate copolymer, or EVA, widely used in athletic-shoe sole foams) and a variety of acrylates. Applications of acrylic copolymer include packaging and sporting goods, and superplasticizer, used for cement production.

Polyethylene terephthalate (aka PET, PETE or the obsolete PETP or PET-P) is a thermoplastic polymer resin of the polyester family and is used in synthetic fibers; beverage, food and other liquid containers; thermoforming applications; and engineering resins often in combination with glass fiber. It is one of the most important raw materials used in man-made fibers.

Depending on its processing and thermal history, it may exist both as an amorphous (transparent) and as a semi-crystalline (opaque and white) material. Its monomer can be synthesized by the esterification reaction between terephthalic acid and ethylene glycol with water as a byproduct, or the transesterification reaction between ethylene glycol and dimethyl terephthalate with methanol as a byproduct. Polymerization is through a polycondensation reaction of the monomers (done immediately after esterification/transesterification) with ethylene glycol as the byproduct (the ethylene glycol is recycled in production).

The majority of the world's PET production is for synthetic fibers (in excess of 60%) with bottle production accounting for around 30% of global demand. In discussing textile applications, PET is generally referred to as simply "polyester" while "PET" is used most often to refer to packaging applications.

PET Applications:
PET can be semi-rigid to rigid, depending on its thickness, and is very lightweight. It makes a good gas and fair moisture barrier, as well as a good barrier to alcohol (requires additional "Barrier" treatment) and solvents. It is strong and impact-resistant. It is naturally colorless and transparent.

When produced as a thin film (often known by the tradename Mylar), PET is often coated with aluminium to reduce its permeability, and to make it reflective and opaque. PET bottles are excellent barrier materials and are widely used for soft drinks, (see carbonation). PET or Dacron is also used as a thermal insulation layer on the outside of the International Space Station as seen in an episode of Modern Marvels "Sub Zero". For certain specialty bottles, PET sandwiches an additional polyvinyl alcohol to further reduce its oxygen permeability.

When filled with glass particles or fibers, it becomes significantly stiffer and more durable. This glass-filled plastic, in a semi-crystalline formulation, is sold under the tradename Rynite, Arnite, Hostadur& Crastin.

Sails are usually made of Dacron, a brand of PET fiber; colorful lightweight spinnakers are usually made of nylon.While all thermoplastics are technically recyclable, PET bottle recycling is more practical than many other plastic applications. The primary reason is that plastic carbonated soft drink bottles and water bottles are almost exclusively PET which makes them more easily identifiable in a recycle stream. PET has a resin identification code of 1. PET, as with many plastics, is also an excellent candidate for thermal recycling (incineration) as it is composed of carbon, hydrogen and oxygen with only trace amounts of catalyst elements (no sulfur) and has the energy content of soft coal. PET was patented in 1941 by the Calico Printers' Association of Manchester. The PET bottle was patented in 1973. Copolymers
In addition to pure (homopolymer) PET, PET modified by copolymerization is also available. In some cases, the modified properties of copolymer are more desirable for a particular application. For example, cyclohexane dimethanol (CHDM) can be added to the polymer backbone in place of ethylene glycol. Since this building block is much larger (6 additional carbon atoms) than the ethylene glycol unit it replaces, it does not fit in with the neighboring chains the way an ethylene glycol unit would. This interferes with crystallization and lowers the polymer's melting temperature. Such PET is generally known as PETG (EastmanChemical and SKchemicals are the only two manufacturers).
Replacing terephthalic acid (right) with isophthalic acid (center) creates a kink in the PET chain, interfering with crystallization and lowering the polymer's melting point.Another common modifier is isophthalic acid, replacing some of the 1,4- (para-) linked terephthalate units. The 1,2- (ortho-) or 1,3- (meta-) linkage produces an angle in the chain, which also disturbs crystallinity. Such copolymers are advantageous for certain molding applications, such as thermoforming, which is used to make tray or blister packages from PET sheet (sometimes called APET, for "amorphous PET"). On the other hand, crystallization is important in other applications where mechanical and dimensional stability are important, such as seat belts. For PET bottles, the use of small amounts of CHDM or other comonomers can be useful: if only small amounts of comonomers are used, crystallization is slowed but not prevented entirely. As a result, bottles are obtainable via stretch blow molding ("SBM"), which are both clear and crystalline enough to be an adequate barrier to aromas and even gasses, such as the carbon dioxide in carbonated beverages.
Low-density polyethylene (LDPE) is a thermoplastic made from oil. It was the first grade of polyethylene, produced in 1933 by Imperial Chemical Industries (ICI) using a high pressure process via free radical polymerisation [1]. Its manufacture employs the same method today.
LDPE is widely used for manufacturing various containers, dispensing bottles, wash bottles, tubing, plastic bags for computer components, and various molded laboratory equipment. Its most common use is in plastic bags.
Other products made from it include:
Trays & general purpose containers
Food storage and laboratory containers
Corrosion-resistant work surfaces
Parts that need to be weldable and machinable
Parts that require flexibility, for which it serves very well
Very soft and pliable parts
Six-pack soda can rings
Extrusion coating on paperboard and aluminum laminated for beverage cartons.
Computer components, such as hard drives, screen cards and disk-drives.

Acrylonitrile butadiene styrene
Monomers in ABS polymerAcrylonitrile butadiene styrene, or ABS, (chemical formula (C8H8· C4H6·C3H3N)n) is a common thermoplastic used to make light, rigid, molded products such as piping, musical instruments (most notably recorders), golf club heads (used for its good shock absorbance), automotive body parts, wheel covers, enclosures, protective head gear, vballs [reusable paintballs], and toys including LEGO bricks[1]. In plumbing, ABS pipes are the black pipes (PVC pipes are white) and also in Plastic Pressure Pipe Systems. ABS plastic ground down to an average diameter of less than 1 micrometre is used as the colorant in some tattoo inks. Tattoo inks that use ABS are extremely vivid. This vividness is the most obvious indicator that the ink contains ABS, as tattoo inks rarely list their ingredients. It is a copolymer made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. The proportions can vary from 15 to 35% acrylonitrile, 5 to 30% butadiene and 40 to 60% styrene. The result is a long chain of polybutadiene criss-crossed with shorter chains of poly(styrene-co-acrylonitrile). The nitrile groups from neighbouring chains, being polar, attract each other and bind the chains together, making ABS stronger than pure polystyrene. The styrene gives the plastic a shiny, impervious surface. The butadiene, a rubbery substance, provides resilience even at low temperatures. ABS can be used between -25 and 60 °C. Production of 1 kg of ABS requires the equivalent of about 2 kg of oil for raw materials and energy. It can also be recycled.

Polyvinyl chloride, (IUPAC Polychloroethene) commonly abbreviated PVC, is a widely used thermoplastic polymer. In terms of revenue generated, it is one of the most valuable products of the chemical industry. Around the world, over 50% of PVC manufactured is used in construction. As a building material, PVC is cheap, durable, and easy to assemble. In recent years, PVC has been replacing traditional building materials such as wood, concrete and clay in many areas. Polyvinyl chloride is used in a variety of applications. As a hard plastic, it is used as vinyl siding, magnetic stripe cards, window profiles, gramophone records (which is the source of the term vinyl records), pipe, plumbing and conduit fixtures. The material is often used in Plastic Pressure Pipe Systems for pipelines in the water and sewer industries because of its inexpensive nature and flexibility. PVC pipe plumbing is typically white, as opposed to ABS, which is commonly available in grey and black, as well as white. It can be made softer and more flexible by the addition of plasticizers, the most widely-used being phthalates. In this form, it is used in clothing and upholstery, and to make flexible hoses and tubing, flooring, to roofing membranes, and electrical cable insulation.

Premium Advertisers

Masterbatch SA
Cabletech Marketing
Premier Packaging
KraussMaffei Injection Moulding Machines
Compact Cool - Water Chillers
Toyota Tsusho - Resins for plastic interior and exterior moldings

Superior Blade and Grinding Services
Granulator Blade Man
Nissei ASB - Injection Stretch Blow Moulding Machines
Dynamic Plastics

Advertise on Plastixportal